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ABSTRACT

Output probabilities of finite-state-machine elements are studied when
the input of the machine elements is a random process. Delay element,
modulo m adder and modulo m multiplier are considered as the machine
elements. A new approach to the problem is made by defining the trans-
formation matrices T and -qa for a modulo m adder and a modulo m
multiplier respectively. By using these matrices, the output probabilities
of the machine and the stochastic matrix of the output are given in
explicit expressions, assuming that the input process is a finite-state,
time-invariant Markov process. A few examples of the combinatorial

circuit of these elements are also studied.
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I. INTRODUCTION

A few probabilistic input-output relations of finite-state~machine
elements are derived for a random input. We defined the transforma-
tion matrices T and y—a in order to express the output probabilities
in explicit relations, which are the matrices with entries of I's and
0's. A few properties of these matrices are studied. T is the trans-
formation matrix for the modulo m adder and Ea is that for the mo-
dulo m multiplier. If we restrict ourselves to a Galois field, or in
other words, if m is a prime, we can obtain the consistent expres-
sions for the probabilitistic relations both for the modulo m adder
and for the modulo m multiplier.

Conditional probability of the two inputs of the machine is consi-
dered. In particular, modulo 2 multiplier is an input-dependent ran-
dom switch., Combinatorial circuits using these modular circuit ele-
ments are analyzed in terms of the conditional probability and the
absoute probability of the inputs. The stochastic matrix of the output
of a few combinatorial circuits is also given in terms of the input
stochastic matrix and the transition matrices we defined, when the

input is a finite-state, time-invariant Markov process.
II. BASIC ELEMENTS OF MODULAR CIRCUITS

We will consider a symbol x which belongs to.a set of symbols

S with m distinct component symbols such that

s={0,1,2,...,m-1} (2.1)
We define the absolute probability of a symbol x at time t as
Pt (x=0)
Pt (x=1)
B x)= |. (2. 2)
Pt (x=m-1}

-1-



where
Pt(x) = Pr(x=x at time t),

Suffix t will be omitted elsewhere through this paper unless it is neces-
sary. Note that ft(x) is not the function of x but rather of t as is seen

in the definition (2. 2). However, we use this notation for convenience,.

A, Delay Element’

If we denote an input and an output at time t by x(t) and z(t),respec-

tively, and the delay operator by D, then

z(t) = D x(t) = x(t-1) (2. 3)

xt) [ | 20
o——" t——o0o

Therefore, we have

B,(z)= P, (x) (2. 4)

where x, ze S.
B. Modulo m Adder

We define an operator @ of addition modulo m such that

faY

zza ® x= atxmodm (2. 5)
~where a,x,z¢ S.
Example

101 2 34 z=a@®x mod 5

0 01 2 3 4

1 12340

2 2 3 4 01

3 34012

4 4 012 3




As is seen in the above example, the vector z is obtained by
shifting the vector x by an amount equal to "a!', cyclically to the
descending direction of x. Therefore, by defining a transformation

I such that

000 017] mxm
1 00 00
01 0 00
T= |2 0! 09 (2. 6)
LO 0 0 ... 1 O-J
we have the following relation:
P(z]a)= T?P(x), x,2z,2¢5 (2. 7)

where P(z|a) is P(z) when "a'' is known.

It is easy to see that Ia is a transformation which gives the
one-to-one correspondence of x and z, because Ia' has only one entry
of 1 in each row and in each column and 0 elsewhere for any ae S.

Now, we have the basic relation

b a@b

e & (2. 8)
T is periodic with period m and
m 0 . . .
T =T =1 = identity matrix
Also we can verify
11 1....
m-1 1 11....
k 111..
ZI = . e . (2.9)
k=0 11 1.
Ia is an orthogonal matrix for all a ¢ S, because
ol R Yae S (2. 10)

Therefore, E‘_a yields an orthogonal transformation of P (x).



More in general, if we consider a modulo m adder with one random
input and k constant inputs Cls €y, €y 8B depicted in the following
figure, then the left side figure is equivalent to that of the right side,

since the associative law holds for the operator @ .

Therefore, we have

C C

1 2 k

T ceee T P(x)
c.®c,P...Hc (2.11)
T 172 kE(x)

B(ZICL’CZ""’Ck)=I

Next, we will consider a modulo m adder with two random inputs
x and y. Then the output z is given by

z = x@®y

In general, x and y are not statistically independent and we define

a conditional probability vector of x for a given y, such that

P(x=0]y) |
P(x=1]y)
Pxly) = |: (2.12)
| Px=m-1] y) | '

Then, from eq. (2. 7), we have

P(z|y) = T'P(x]y)

Therefore, averaging this equation over all ye S, we get

m-1

Plz) = z Ply)TY P (x| y)
y=0



or equivalently
m-1
P(z) 2 P(x)T* P(y | x) (2.13)
x=0

In another expression, since a component of P(z) is the skew sum
of the joint probability. matrix of x and y, we can calculate it

according to the following formula.

_ /// = - s T - >': —\/\
) p(8, 0L 7 p(0,1)  ..... p(0;m) )7
P20 #0070 e1) e Tl medy
P(z=1) +| . LT L
: _F IICZ/‘.’/%’// (2.14)
- l)u?:(;m/l,’ﬁ) p(m-1,1} ~ 7. < "p(m-1, m-1)
Z=Im~1) .

where p(x, y} is the joint probability of x and y.

Now, we define a transition matrix G such that

G=[P(x]0), T Pix|1), ¥ B(x|2),..., T Blx| m-1}]

P(0] 0) P(m-1]1) .... P(l|m-1)
P(1| 0) P(0] 1) ... P]m-1)
P(2] 0) P(1] 1) .... P(3)m-1)
= i . M (2.15)
P(m-1]| 0) P(m-2|1) .... P(0|m-1)
Then, using this matrix we can rewrite eq. (2.13) in an explicit
formula;
P(z) = G Ply) (2.16)
G'isanm by m matrix and is a stochastic matrix, which
satisfies
m-~1 m-1
Z [9'] =Z[‘~]ij=1 (2.17)
j=0 Noico



This can easily be proved recalling that IJ is a transformation with

one-to-one correspondence and that

m-1

zp<ilj>=1

i=0

If x and y are statistically independent, then P(x] y) = P(x) and

G=[P (), T B(x), T° P(x), ..., T B(x)]
P(m-1) P(m-2) .... P(l)
P(0) P(m-1) .... P(2)
P(l) P(0) e P(3)
= : : : (2.18)
P(m-2) P(m-3) .... P(0)
From eq. (2.12) and knowing that _E(xl y) = P(x), we have
m-1
G= Z P(x) T™ (2.19)
x=0
Also we see that
P(z) = z P(x = z-y mod m) PB(y) (2.20)

y
This implies that P(z) is given by the composition modulo m of

P(x) and P(y).
Furthermore, if
P(x|y)= P(x) =1/m, xeS

then
111
m-1 111
1 x_ 1 111
G=EZ T = = . : (2.21)
x=0 111




Therefore, P(z) is equal to 1/m for all z¢ S regardiess of P(y), i.e.,
1
1

Pz) = 1 (2.22)

L
m
1

This is also true for any P(x) when P(y) = 1/m for all y ¢ S.

C. Modulo m Multiplier

First, we will consider a constant multiplier defined by

Z=aox=ax modm (2.23)

where a is a constant, x is a random input and z is an output of

the multiplier as shown below.

X o— —(o) —oz

a
As we have done for modulo m adder, we also define an m by

m transformation matrix Ea such that

, i=a0°j
) ‘ (2.24)
U, = 0, i#aoj

Ua..'. is ij-th element of the matrix _[la A few examples of _E]_a are
shd¥n in the appendix.

If x = jis transformed by —U—a’ then from eq. (2.24) z is given
by z = i = aoj. Therefore, Ea is a transformation which gives the
change of symbols from x to z according to z = a ox. The absolute

probability vector of z for a given constant "a'' is now given by



P(z] a) = U, P(x) (2.25)

Before going into the probabilistic relations of x, z and a,

we will study more about U _.
—a

i) Ea. has exactly one entry of 1 in each column and 0 entries
elsewhere.

Proof. Each of m input symbols has to make a deterministic transi-
tion to a certain output symbol in S. If there were two or more
entries of 1's in a column, then there would be two or more outputs
corresponding to that input. This contradicts the definition

of deterministic machine elements. If there were no entry of 1 in

a column, then there would be no output corresponding to the input.
This contradicts the fact that the output symbol should be
either one of the symbols in S. Therefore, there is exactly one

entry of 1 in each column of U, and 0 entries elsewhere. Q.E. D.

ii) Conseguently, _I_J_a has exactly m entries of 1's and mz—m

entries of 0's.

Now, we will prove the following theorem:
Theorem 1. If a# 0, then _Ila has exactly one entry of 1 in ¢ach column

and in each row, if and only if
GCD(a,m) =1, ac 8§, a+40 (2. 26)

where GCD(a,m) denotes the Greatest Common Divisor of a and m.

Proof. From the definition of_[la by eq. (2.24),
i=aoj, jeS, ae S, a0
then there exists a certain positive integer k such that

izaoj=aj~km, i€ S

Therefore, GCD(a, m) divides (2j-km) and hence, i; i.e.,



L =apj mod -

—_— —_— (2.27)
GCD(a, m) GCD(a, m)

Now, m/GCD(a, m) is a prime. Recalling the theorem* of Galois

field, i.e., forr, x, se S,

s40

we have

{chy'c'f _Dlr—a,m) 33l _GC_—_TID(a,m =20 jmod ’G"_(_'Tcnma,m ]}

{ Vs Yr 3x[xe8=r mod p]}@{pis prime} (2.28)

@{ —GT]-D%E) is a prime, a, je S} (2.29)
The number of 1's in Ha. is exactly m, and from the property
(i) there is exactly one "1' associated with j for all je S. Therefore,
i can take any integer in S, if and only if GCD(a, m) = 1. From the
property (i), there is exactly one entry of 1 in j-th column for all j

in S. Therefore, there is exactly one entry of 1 in the i-th row for
all ie S, if and only if GCD(a, m) = 1. Q. E.D.

Consequence. There is one-to-one correspondence between input

symbols and output symbols, if and only if GCD(a, m) = 1.

Theorem 2. For all a, be S,

U.9%=8p8,.75 0% (2. 30)

Proof. Let us take a, b, i, je S, then by the definition of _I_Ja,

1, izmack

U, =
ik 0, ifaock
Ubk = 1, k:boJ
) 0, k¢ boj

Since i is uniquely determined by i = aoboj,

* See, Zadeh, L.A., Sept. 21, 196]. See also, Ref. 2.
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m-
2 Ua Ub
k=0 1k kJ ik Tkj

L,
{0, i4 aoboj

Therefore, by the definition of _[_J_x,

i= aaboj

Furthermore, since aocb= boa, we have

Hau b~ —qbq ang-l-‘]-a : Q. E. D.

From these theorems, we can derive the following properties;

U, = EO (2. 31)
P_Ol.}_— = EO’ for all k; integer > 0 (2. 32)
y—l = l (2. 33)
Uk = y_i , Yke S, n=even integer (2. 34)

In particular,

2
..qm_]_ =...:[
Theorem 3. Ha is an orthogonal matrix, i.e.,
Ual,=1 (2. 35)

if and only if a # 0 and

GCD(a, m) = 1.

-10-



From the definition (2. 24) of _L_Ja,
1, k=aoei=acj

U. U ato0

34 a'kj 0, otherwise

K
Recalling the theorem of Galois field that

. . C m
{aci=a0j mod m}¢{i=j mod SChE ™) } (2. 36)
we have
o m
TR =(1' i=Jmod empr—m
—a—atl 10, otherwise

Now, i = j mod m/GCD(a, m) is unique for i, je S, if and only if
GCD(a, m) = 1. Therefore, y_; P—a =1, if and only if a £ 0 and
GCD(a, m) = 1. Q. E. D.
Consequently, we see that -ga is an orthogonal matrix for
all ae S except a =0, if mis a prirpe. Furthermore, Hl and __I_J_m_1
are orthogonal matrices for all integers m > 2.
In connection with the determinant of -qa,’ we have the following

theorem;

Theorem 4.

+1, ifa#0, and GCD(a, m) = 1

0, ifa=0, or GCD(a, m) # L.

Proof. For a = 0, it is evident that [y_O[ = 0. If GCD(a, m) = I,

from the theorem | there is exactly one entry of 1 in each column

and in each row. Therefore, E—a is transformed to an identity ma-

trix by a certain number of permutations of columns or rows. The

value of the determinant does not change with such perrnutations

except the sign of it, which is positive for an even number of permutations

% See, Zadeh, L.A.. Sept. 21, 1961. See also, Ref. 2.
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and negative for an odd number of permutations. Since [_I_[ =1, we
have | Eal =+1if a#0, and GCD(a, m) = L.
If GCD(a, m) # 1, then by the theorem 1 there exist some

rows whose entries are all zeroes, Therefore, the determinant

of it is zero. Q. E. D.
Example.
m=3, l_[_]olzo, ]Ell.':l, ]EZI:-I
m=4, 'Eolzo’ |9_1|=1» [EZI=0’ IE_3I =-1
m=5, [Ug|=0, [U/[=1, [U,[=-1, |U,[=-1
,H4| =1
m=6, [U =0, |U[=l, |U,[=0, [U,]=0
|H4l =0, ,ESI"I

Consequently, we can conclude that there exists an inverse
matrix of U_, if and only if a # 0 and GCD(a, m) = 1,

So much for the general properties of I_J_a, we will consider a
cascaded connection of the constant multipliers with constants

CsCpyCgyeney Cp € S.

X ¢ Q "— ............. —— L

Then, from the theorem 2, we have the absolute probability of

output z.

i
il
x

_l?_(z] <y

’ Ck) Ec lJ—c
(2. 37)
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Next, we will consider a modulo m multiplier with two
random inputs x and y. By the similar fashion to that which we used

for modulo m adder, we can get

Pz|y) = gy}z(x! y) (2. 38)

Therefore, we have

m-]1

B(z) Z P(y)U, P(x|y)
y=0

or equivalently
m-1

P(z) Z P(x)U, P(y| x)

x=0
Defining a transition matrix H such that
E = [HoB(XI 0):21}3("' 1)’ LI 'E-m-l—P(xl m-l)] (2 40)

we can rewrite eq. (2. 36) in the form

P(z) = HP(y) (2. 41)

Here, H is an m by m square matrix and its transpose H'

is a conditional probability matrix, which satisfies

m-1

(-
2 Hij =1 (2. 42)
j=0

This can be proved as follows;
From the definition of H, we have
m-1

H..=ZU. P(k|j
" g POl 9)
k=0



Therefore,

m-1 m-1 m-1 m-1
H!.=ZH..= ZU. ' ZPk'
i i S (k|3)
j=0 i=0 i=0 . k=0

From the property (i) of U,  we know that there is exactly one entry of
1 in each column of Hj for any je S, hence, the column sum of U, is equal
to one. Also the second term of the above equation is one because P(kl )]

is a conditional probability. Therefore, we have

m-1
Z H{j =1 Q. E.D.
j=0

If x and y are statistically independent, then P(xl y) = P(x) and

E = [HOB(X): le(x): oo :Hm_lg(x)] (2. 43)
m-1
= Z P(x)U_ (2. 44)
x=0
Example: Independent case
m=3 m=5
. 1 PO PO PO PO
1 PO PO 0 P1 1:“3 P2 P4
H=|0 P, P, H- |o P, P P, P,
0 P2 Pl 0 P3 P4 P1 P2
i 1'-’4 PZ P3 PL
Further, if P(x) = 1/m foér all xe S, then from eq. (2. 44)
1 1/m lUm ... 1/m]
0 1/m 1l/m ... 1/m
H= 0 1l/m 1l/m ... l/m (2. 45)
E)_ 1/m 1/m ... l/m

-14-



Therefore, we have
m-1

P(y=0)+ ZP(y=i), 2=0
S|

P(z) = . (2. 46)

m-1
r_:l Z Ply=i), z#0
izl

This shows us that if P(Y=0) is nonzero, the probability that z=0
is larger than the probability that z takes a symbol other than O,
which is equal for any symbols z ¢ S, z#0.

Finally, we note that in particular for the binary system the
modulo 2 multiplier is simply an on-off switch. If the two inputs are
mutually correlated signals, the modulo 2 rnultiplier is a statistically

input-dependent random switch.
III. COMBINATORIAL CIRCUITS
We will study here a few examples of combinatorial circuits com-

posed of the machine elements studied in the preceding articles.

A. A Modulo m Adder and Two Constant Multipliers

(D)
N2/
== o

z=aox®box=(a®Pb)o x (3.1)

Therefore, this circuit is reduced to a circuit with a constant multi-

plier with constant (a ®b). Hence, we have

P(z|a,b) = U, & Plx) (3.2)

-15-



B. A Delay Element and a Modulo m Adder

D Yy
X O—<——. —)—oz
y(t) = Dx(t) = x{t-1)
z(t) = y(t) ®x(t) = x(t-1) © x(t)

(3.3)

The conditional probability P(xl y) is now

P [x(t)| y(t) ] = P[x(t)| x(t-1) ]

Therefox:e, if the input process is a time-invariant, finite-state
simple Markov process, then B(xl y) is the column vector composed
of the y-th column of the transpose of fhe stochastic matrix p of the

input, i.e., defining

EY = B(xl y) . (3.4)

[y

where the stochastic matrix p is

E' = [20921,22,...,3111_1] (3- 5)
then, the absolute probability of z is

P(2)=GP(y) =GP, ,(x) . (3. 6)

where

2 -1 .
G = [pg Tpp Tpyeees Zm Bm—ll (3.7

G is independent of time, since p is time-invariant. Using the property

of a simple Markov process, i.e.,

P, (2) =GP (x) (3.8)
P.x)=p'P _,(x) (3.9)
we have

-16-



Penl2) =Gp'Ey 1< x)
92'9 _l:t(x)

= {9!'1291} 1 Et(z)

(3.10)

(3.11)

if G is nonsingular. This implies that if I_gi # 0 and x(t) is a simple

Markov process, then the output z{t) is also a simple Markov process

with stochastic matrix

-1

{G""pG 1}
Examglé: m=2
1-pyy Po1
E =
plO 1-Pyo
T [
1- p01 1-p)o
P1o
|G| = pyy-Pgy
Pio -(-pyo
G'_1= 1

GB,=H'P01(1'901+910)' 1-py (1 Py ~Pyp)

b 4D, ) -
Por(1-PortPro) Pty Py

G lpgr= | "% Pyo 2P1P10

Po1tP;g%Po1Po’  1"Po1 P1ot?Po1Plg

(3.12)

(3.13)

(3.14)

We will see in this example that if the input process is an independent

process, then

-17-



Pyl =Gp'P, ,(x) | (3.10)

=Gp'G7 B ) '
= {G'"'pG"}' B,(2) (3.11)

if G is nonsingular. This implies that if I_ql # 0 and x(t) is a simple
Markov process, then the output z(t) is also a simple Markov process

with stochastic matrix

1

{67 pg ) (3.12)
Examelé: m=2
1-poy Po1
B =
Po 1P
0 1
T=11 o
r1- .
I-pg 1Py
9:
| Pa P10
|Gl = pg-Pgy
Po  -{l-pyg
oo L
- I gl 'p01 (1'P01)

ol P01 Por*Proh 1ot Poy-Py)
Gp N . (3.13)
Poill-P *Pro)  Pyollteg;-Pyg)

G lpar= | 1"%Pg1Pyo 2Pg1P10 (3.14)
Po1tP g %Po1Po’  1"Po17P10*?Po1P1g
We will see in this example that if the input process is an independent

process, ihen

-17-



Po1t Pyp=l
1-2p41P1g>  2Pq1Py

G lpg= (3.15)
1-2p1P o0 2PgPio

and, hence, z(t) is also an independent process. If | G| =0, then
Py;=Pyo and 9-1 does not exist, and P(x=0)=P(x=1)=1/ 2.
1-pe1  1-Pgy

Gp'= (3.16)
Po Po1
and we have )
[1-Por Pyg ]
P, (2) = = (3.17)
Po 1-P1g

regardless of P(x) and t. '
In general, if x(t)'is an independent process, z(t) is also an

independent process, when |9| # 0. The proof of this statement is

-given as follows:

If x(t) is an independent process, then pij=pj and

Py Py Py e Pm-1
Pm-1 Po  Pp -re- Pm-2 ‘
G'= |Pm-2 Pm.1 Po-:"-c- Pm-3 (3.18)
P P, Py rrec Pg
Therefore, {p —q’}ij={P—9'}j is independent of i.
m-1
-1 _ -1
(G pa)yy = Z{—G-' Fi(RG'Y
k=0

. m-1
- (G}, ) 1@y,
k=0

-18-



Now, the second term of the above equation is

m-1 m-1
P RO S YIRS 5.0
(N m Z( 1) | Cofac G3i|
J=1 = j=0
= -—1—- G!
|9_| ~ |i-th column replaced by 1's.
€lgil/ gl

From eq. (3.18), we know that

{G"Y} = Py k=j-1i modm

—_ ij
Therefore,
il, i=n
' - .
{g-n}ij Py k=j-imodm, i,je¢S, i#n

Since lgxlll does not change by an even number of permutations of 9;1, by

shifting the rows and columns of it by n, i.e., defining

r=i-nmodm, s=j-nmodm

we have
' 1, r=0
' - 1 =
{g'n}ij {90 rs Py k=j-i=s-r mod m
i#n, r#0
Hence we have
m-1 .
-1, _ . )
{G' }ij— IEI'J/ |G| = |9_'0|/]_Q| = Constant, Vie S
j=0
Therefore,

-19-



ub
1'1 ' - |‘1 '
{G -EG}ij {G pG }J

Thus, completing the proof. Q.E.D.

If lg] =0, then 9-1 does not exist and lP_t(z) should be found from
eq. (3. 6).
C. Cascaded Circuit of (B)

The analysis of the preceding example can be applied for the

cascaded circuit shown below.
xo -Xl X X

¥ 2 T n-1 ‘ *n
D D D - | D -0
By the similar fashion we have
B =p" B ) (3.19)
where’
é0)= p; stochastic matrix of the input process
-1
é_n)—‘_ E(H-l)' P_(n-l)g(n-l)' (3. 20)
N I O U U L LSt
k k k -1 (k
a® - p®, op . o™ g (3. 21)
. g

By an iterative method one can find the stochastic matrix at the n-th

stage. Furthermore, from eq. (3. 6), we have

Px ) =GP (x)

—t-n x0

If we consider a cascaded circuit witk infinite number of

unit circuits, then

~20-



A o0
lim P(x)=P (x )=G P,(x.) (3. 23)
n —t''n o' — =00

where

G® 2im G° (3. 24)
n—»oo

Since G' is a stochastic matrix and so is g_'n, _C_}_oo can be found by the same
way as we use to find the stationary solution of the absolute probability Q

of a Markov process, whose transition matrix is G'. Therefore, we

have<6"8’ 9,11)
G¥=[2QQ..... Q] (3. 25)
(i

m
where Q is an eigenvector corresponding to the eigenvalue A=l of the

characteri stic equation

[AI-G'| =0 : (3. 26)

and Q is uniquely determined from the condition that

m-1
Sa
1
i=0
ExamEIe: m= 2

1 -pg; Py
G' —

1 -pp Po

) 1-pio

Q= -

~21-



1-pjy Pgp
yOO _ 1
G —

. Pg P
1-p1y Py 10 Pol

This result indicates that the output absolute probability of infinitely
cascaded networks of this type is independent of the probability of the

input process and

Note that the delay introduced through this circuit is infinity.

State equation of the cascaded network with length n is written by

x (t)=x_(t)Dx | (t-1)

and we can also express it in terms of xo(t-i), i.e.,

n

n
x_(t) = Z (i >ax0(t-i) (3. 27)
@
j=0

Accordingly, we can describe an equivalent circuit with n delay elements

and (n-1) constant multipliers with constants Cils'

/n
c, = i mod m
xd(.t-n ~-x'o(tnn 1)
R RO
y h ,
¢ \ <, l
L
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D. Delay Element and Mcdulc m Multiplier
x b
&

z(t) = y(t)ox(t) = x(t-1)o x(t) ' (3. 28)

| D y z

Assuming that x(t) is a time-invariant, simpie Markov process, and

using the matrices defined in the preceding article, we have
=HP
P(z)=HP (x) (3. 29)
where H is, for this particular case,

_Ii = [EOBO’ HlRl’Hsz’ ce ey Hm-l Em-ll ' (3- 30)

By is defined by eq. (3. 4) from the stochastic matrix of the input process.

Similar to the preceding example, we have
- [}
Pz =Hp' P, _,(x) (3. 31)

P (2 = {m pH}'P Uz) (3. 32)

This implies that if the input process is a simple Markov process and |E| #0,

then the output process is also a simple Markov process with stochastic

matrix
(g lpmy (3. 33)
Example: m=2
| 'TPa Poy
o Pp Py

-23-



5
1 7
] Plo
0 l-plo_j
|H| = 1-p
U R T
H =1
Plo| o 1
2
1-pg;(1-Pyg)  2P)5Pyg
Hp' =
H 2
Po1{1-Py) (1-py)
. 1-pg;(1-pyp) P1o{l-P1p) ]
H pH'=
P)o{I*pg)) 1-p) okt pg))

From this we can see that if the input process is an independent process,

then p01+p10 = 1 and the output process is also an independent process.

E. Cascaded Circuit of (D)

X x  f X
A T R e s W 2

If we define the state vectors as in the above figure, then

x () = %, 1(6) o x__(t-1)

.........................

-24-
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and finally we have

o

n Ck
x,(0) = 1 {xple-i) (3. 56)

where
Co

1)

The results are quite similar to the example in (C).

P (x) -_»E(n)' P, ,(x) , (3.57)
. whereo
U
P_(n) - -Ii(n_l)t'lP_(n-l) _I'_I_(n-l)l
D e D) L)
H(k) - [_I‘_IO__p_ék) , EIB(k)’ e ’Hm_lﬂn(-lli)l ]

év
Then the input-output relation is given by

n

P (x)=HTP _ (x)) (3.58)

Also the limiting absolute probability Bw(xm) is

Eoo(xoo) =8

where
m —
H =[2QQ..... Q] (3.59)
m

25~



and Q is the stationary solution of the Markov process, which satisfies

I-H Q=90

E:éa.mgle: m=2

L ST
E:
0 l-p10
1
9: . =P (x(n)

o (11
§=Loo

11
p 0O
o_ |0 00 -
H = Do "Ho
00
1
0
Pobig)= |0
0

(3. 60)

(3.61)

(3.62)

This implies that the output symbol is 0 with probability 1 as n approaches

infinity. It is quite natural because '"0'" is an absorbing state through this

network, and by an infinitely large number of trials through these network

elements, the symbol at the final stage is absorbed in ''0."
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IV, CONCLUSIONS

We have studied the transformation matrices T and Ha and their
properties. Further, defining the transition matrices G and H for a
modulo m adder and for a modulo m multiplier derived from T and _l_Ia.
the output probabilities are expressed simply by the product of these
matrices and the input probability matrix. :

Also we have studied a few examples of the combinatorial circuit
using these modular circuit elements. Circuits with delay elements are
particularly of our interest. We have shown, in a few examples, that
if the input process is a time-invariant simple Markov process, then the
output process is also a simple Markov process whose stochastic ma-
trix is iteratively found from the input stochastic matrix.

Combinatorial circuits with feedback are not treated yet in this
paper. The same approach would be applied for a circuit with feed-
back, which is now being studied. If we obtain some expressions for
them, it would be possible to generalize this analysis for a general
modular system.

In a digital communication system, or in a digital data processing
system, one may assume a digital computer or a sequential circuit
at the terminal machines of it. Its input will be a stochastic process.
Then, what would be an output process? This question is not wholly
answered yet, because the circuit with feedback is not analyzed yet.

It would be very interesting to analyze the probabilistic properties
of such systems in order to design a desired circuit or to optimize

a system in a probabilistic sense.
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